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Tropones substituted in the n-position by good leaving groups are converted into benzoic 

acid derivatives by a wide variety of bases; when two leaving groups are available, a mixture of 

products is often obtained (3). 
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Tracer experiments with carbon-14 (4a), the failure of 2-chlorotropone to react with silver 

nitrate (4b), and exchange experiments involving H2 
18 

0 (4~) lead to rejection of all but three 

mechanisms for the rearrangement. Scheme 1 (6) and the related Scheme 2 were discounted by -- -- 

Doering and Denney (4a) since each fails to take account of the general observation that when 

X and Y are of different basicity, the poorer leaving group is preferentially expelled. A 

mechanism consistent with all of these data, involves reversible formation of 

norcaradiene 2, followed by ring-opening to either or both of two cyclohexadienyl anions, $_ and 

4J?; expulsion of X- or Y- yields the aromatic products. The significant feature of this mecha- 

nism is that loss of X- or Y- is not part of the product-determining transition state; rather, 

product formation is determined solely by energy differences in the transition states leading 

from 2to 4aand 4& According to 3 a substituent on the ring which can stabilize a 

Scheme 1 -- 

Scheme 2 --_- 
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negative charge through resonance should, by suitable placement, be able to direct the ring- 

opening of 2 in the direction of either 43 or 4b, In fact, for the case X = 0CH3 and Y = Br, a 

nitro group at C-5 gives loss of X; exclusively (7), and a carbomethoxy group at C-4 leads cnm- 

pletely to loss of Y-(5). 

We began our study of the tropolone rearrangement with the hope of determining whether or 

not the ring-opening step (3_ + 4J is reversible. Closure of an anion such as &on the carbonyl 

group is formally a homoenolization reaction although, to date, the only cases reported involve 

ketones (8). We have investigated the reactions of cyclohexadiene 5_, hoping to find a base which 

would convert it into anion fr (Scheme 43. Unlike 42 and 43 fr. cannot yield an aromatic compound 

directly, but by ring-closure to 7_, followed by cleavage in the opposite direction to 3 a deri- 

vative of o-toluic acid 9 can be formed. Alternatively, closure of 6_ to &C_ could generate tropone 

I.& and loss of X- from L could yield tropone & but both sand &Z-would be expected to yield 
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9_in the presence of B-. Finally, norcaradiene gmight open in the opposite direction to give 

an anion which, by a series of such cyclizations and openings [formally like the thermal re- 

arrangements of norcaradienes (9)], would eventually give anion g and then aromatic compound 9_. 

As is reported in the preceding communication, compounds 5a-d with a number of bases never -- 

yielded 9_. Consideration of the following summary of the pertinent reactions of 5a-d leads not --.- 

only to the conclusion that the ring-closure reaction (2.2. 4_+ 3J does not occur, but also to 

the realization that S-2 and not 3is the more plausible mechanism for the tropolone 

rearrangement: 

1. A number of bases are capable of converting Linto aas evidenced by double-bond iso- 

merization of 5a with sodium methoxide in methanol, - potassium_t-butoxide in DMSO, and lithium 

dimethylamide in HMPA, and of zwith sodium isopropoxide in isopropanol and potassium L-butoxide 

in DMSO. 

2. The most reasonable mechanism for the formation of _o-methoxytoluene and carbon monoxide 

from &or zwith lithium dimethylamide in HMPA, from &with phenyllithium, and rrom 2 or k 

with potassium t-butoxide in DMS.0 is via anion $_. While a concerted loss of proton, carbon - - 

monoxide, and alkoxide is conceivable, the fact that double-bond isomerization is found in re- 

covered cyclohexadiene argues for a two-step mechanism. 

3. The related compound, dimethyl l-methyl-2,4-cyclohexadiene-1,2-dicarboxylate (compound 

j'_of the previous communication) is similarly converted into methyl?-toluate and a double-bond 

isomer with either potassium t-butoxide in t-butanol or potassium carbonate in dimethylformamide. - 

Thus, in both protic and aprotic solvents, the only fate we have observed for o-is either 

protonation or loss of carbon monoxide. Closure of $_ to 1 or 1Ldoes not occur. 

We have studied the tropolone rearrangement of J2_ and of its isomer 13 and have found both 

reactions to be normal. Sodium methoxide in refluxing methanol converts both 12 and Einto 14 

and a water-soluble fraction consisting of sodium o-toluate and sodium 3-methyltropolonate. NO - 

trace of 2 (or its double-bond isomers) or o-methoxytoluene could be found. If j2_ rearranges by 

the mechanism of Scheme & it must pass through intermediate 3 to fit the data, Imust open 

12. 14 13 
exclusively towards 8 and not at all towards 6.This is unreasonable since the only difference 

between the transition states leading to !$ and Eis the stability of a carbanion substituted by 

a methoxyl or a methyl group, respectively; that the two transition states should be of compara- 

ble stability (if anything, that leading to $_ should be of lower energy) is shown by the nearly 

eoual rates of nucleophilic aromatic substitution by methoxide ion on 4-methyl- and 4-methoxy-2- 

nitrobromobenzene (10) and by the greater rate of proton abstraction by methoxide from methyl 

o-methoxyacetate than from methyl propionate (11). 

We conclude, therefore, that l2yields Edirectly from 7_, by-passing intermediate 3 and 

that h opens as it does because only one leaving group is available. Further evidence that the 



leaving group must depart as the cyclopropane ring opens is the observation that 2-meth!:Itropone 

with methanolic sodium methoxide yields neither toluene nor cyclohexadienes, but only tilt-, 

-L concerted ring-opening, aromatization, and loss of X- or Y- is, ther<zrore, 

preferred for simple tropones such as 12 (i.e., the reaction is more like an E2 than an ii1 -- CR 
elimination). In the way of analogy, concerted base-promoted ring-opening with loss oi :lalide 

has been demonstrated for a pair of isomeric @-bromocyclopropanones (12). The original reason 

(4a) for invoking Scheme 3 was to explain the preferential expulsion of the poorer leaving group. I__-- 

This can be accommodated by Scheme 2_, if it is realized that substantial carbanion cllaracter - 

develops on the 8 carbon atom in an E2 elimination (13). Thus, in the expulsion of X- from j_ 

negative charge is developed in the transition state at the carbon bearing Y. When, 

for example, X = 0CH3 and Y = Br, placing a partial negative charge near Y rather than near X 

leads to a lower energy transition state despite the tact that the stronger base is being expelled. 

It is, of course, possible that in those cases cited earlier (5,7) in which a powerful electron- 

withdrawing substituent directs the course of'the rearrangement, the two-step (El 
CB 

) mechanism is 

favored and the reaction passes through a resonance stabilized intermediate such as 4a ar kb_. - 
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